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Non-Hermitian synthetic lattices with light-matter coupling
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We propose that light-matter coupling can be used to realize synthetic lattices. In particular, we consider a
one-dimensional chain of exciton-photon sites to create a comb lattice that exhibits a transition from a flat band
to a finite mass dispersion by tuning site-dependent light-matter coupling. Moreover, in a non-Hermitian system
with gain and loss, the flat-band phase is much more robust, and the transition is accompanied by the appearance
of exceptional points in the complex energy spectrum. We demonstrate that by engineering the light-matter
coupling in the synthetic lattice, one can explore various phases in the lasing regime. Our proposal paves the
way for studying non-Hermitian systems in higher dimensions.
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I. INTRODUCTION

Lattice models are ubiquitous in physics with applications
ranging from approximations of real physical systems to effi-
cient tools in theoretical research, such as lattice gauge theory.
In the context of quantum simulation, synthetic lattices are
highly beneficial as a method for using the internal degree
of freedoms [1] or external states [2] to investigate nontriv-
ial topology and higher dimensions [1,3]. The formation of
different lattice configurations may be implemented by us-
ing spin [4], Rydberg states [5], orbital angular momentum
states [6,7], and photonic frequency comb [8].

Light-matter coupling may provide an advantage in inves-
tigations of non-Hermitian physics [9] due to flows of energy
or particles to and from a system. A key feature of non-
Hermitian systems is the presence of complex eigenvalues,
which can lead to a variety of interesting phenomena, such
as nonreciprocal transport [10], topological phases [11], and
exceptional points [12]. A possible non-Hermitian system is a
lattice with gain and loss at its sites [13,14]. Here we explore
how light-matter coupling can provide an additional degree
of freedom for creating a synthetic lattice. We study a simple
model of a one-dimensional lattice in which the light-matter
coupling can be manipulated. As such, we provide an ex-
ample of a comb lattice. In one dimension, the lattice can
be obtained from a two-leg ladder lattice [15] by removing
one leg whereas keeping all other connections and couplings
unchanged. Such lattices have been explored in the context of
random walks [16] and modeling chemical compounds [17].

Light can couple to matter both weakly or strongly in
the latter case leading to hybrid light-matter quasiparticles
called polaritons [18,19]. Lattices of photonic nodes can be
created by structuring the sample itself by deposition of
a patterned layer on top of a cavity, sample etching [20],
or etch-and-overgrowth [21] procedures as well as using a
spatial light modulator to excite selected nodes [22]. The
ease of creating arbitrary geometries and potential landscapes
in polariton systems opened the way for studying a vari-
ety of Hamiltonian models, including Lieb lattices [23–32],

kagome [21], and honeycomb [20,33] lattices, as well as one-
dimensional [34,35] and two-dimensional [36] topological
systems. Owning to the possibility to manipulate gain and
loss [37,38] polaritons are an ideal system for studying non-
Hermitian effects [39]. A growing interest in such systems is
directly related to the possibility of exploring the physics of
exceptional points [12,40–42], parity-time symmetry [43], or
skin effect [10,44–46].

In this paper, we propose that light-matter coupling in the
intermediate regime between strong and weak coupling can
be exploited to introduce a synthetic lattice with nontrivial
properties. The considered lattice, schematically shown in
Fig. 1, is synthetic in the sense that it can be engineered to
possess specific features, such as lasing and flat bands. The
fact that photon and exciton modes in the same micropillar
couple allows to describe the system formally as a one-legged
comb model. This allows investigation of the physics of a
Lieb (Stub) lattice, including the appearance of a flat band.
We show that site-dependent tuning of light-matter coupling
strength allows the observation of the transition from a flat
band to a dispersive spectrum.

Moreover, by analyzing the properties of the system in
the more realistic non-Hermitian regime with gain and loss
included, we find that the difference in loss rates between ex-
citons and photons leads to a great enhancement of robustness
of the flat-band phase, and the appearance of a new flat band
in a strongly non-Hermitian case. These effects are shown to
persist in the nonlinear regime of lasing where the signatures
of a flat band and associated compact localized states [47]
(CLS) can be observed in a state resulting from a long-time
evolution starting from a random initial condition.

Our results show that manipulating the light-matter cou-
pling strength in lattices opens the way for the experimental
realization of a new kind of synthetic lattices that allow
to explore strongly non-Hermitian physics. Our model can
be easily extended to higher dimensions or a larger num-
ber of light and matter states, such as orthogonal light
polarizations or higher exciton states [48,49]. It can be imple-
mented in other physical platforms, such as cavity quantum
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FIG. 1. Scheme of our model. (Top) At lattice site j photonic
(ψC

j ) and excitonic (ψX
j ) states are coupled. The neighboring pho-

tonic sites are coupled to each other with coupling rate J . A possible
choice of a unit cell is marked by the green square. (Bottom) In
practice the model can be implemented in a lattice of coupled
micropillars.

electrodynamics [50] and coupled atom-light systems [51].
We believe that our proposal may lead to engineering highly
dimensional extended lattices, providing an ideal platform for
simulators of complex non-Hermitian models.

II. MODEL

The lattice described by our model shown in Fig. 1,
consists of 2N micropillars (N is the cell index with two
micropillars per unit cell) forming a one-dimensional chain
with lattice constant a. Each site is described with two com-
ponents where we label exciton components with superscript
X and photonic components with superscript C. We assume
that there is finite and uniform coupling between the sites
via photonic components, whereas exciton components are
not coupled with each other due to the much larger exciton
effective mass. Photon and exciton modes in the same site are
coupled with each other with the strength corresponding to
Rabi frequencies which vary from site to site. We consider
a staggered distribution of couplings denoted by �1 in odd-
numbered sites and �2 in even-numbered sites, where �2 �
�1. In particular, such a position-dependent light-matter cou-
pling can be realized in practice using site-dependent external
pumping, which induces saturation of Rabi coupling [52].
Photon tunneling between photon modes localized in neigh-
boring micropillars is described with J . As result, the model
describing the system can be considered effectively two di-
mensional with an additional two-site exciton-photon degree
of freedom.

Our model equations can be presented in terms of four
fields inside a unit cell. Denoting each cell with index n =
1–3, . . . N , we have 2N micropillars, for which we introduce
fields ψC

j , ψX
j corresponding to photon and exciton com-

ponents at site j, where j = 1, 2, . . . , 2N . The mean-field
evolution equations are

i ∂tψ
C
j = −iγCψC

j + J
(
ψC

j−1 + ψC
j+1

) + � jψ
X
j , (1a)

i ∂tψ
X
j = −iγX ψX

j + gh̄−1
∣∣ψX

j

∣∣2
ψX

j + � jψ
C
j , (1b)

where � j = �1 for odd j and � j = �2 for even j, γC (γX )
denotes the decay rate from the photon (exciton) modes, and g
is the nonlinear coefficient. Here g is a complex number taking
into account both exciton-exciton interaction in its real part
and gain saturation effect in its imaginary part [42]. In the
case of periodic boundary conditions we assume ψC

N+1 = ψC
1 .

For simplicity, we consider the case where there is no exciton-
photon detuning at any site.

To calculate the spectrum of the system, we consider the
eigenvalue equation H̃�̃ = E (k)�̃ at g = 0, where �̃ is a
plane wave solution with momentum k. We obtain

H̃ =

⎛
⎜⎜⎜⎜⎝

−ih̄γC h̄�1 h̄J (1 + e−ika) 0

h̄�1 −ih̄γX 0 0

h̄J (1 + eika) 0 −ih̄γC h̄�2

0 0 h̄�2 −ih̄γX

⎞
⎟⎟⎟⎟⎠

.

(2)

In the following, we will analyze in detail the properties of the
system in both linear and nonlinear regimes.

III. HERMITIAN CASE

For the sake of clarity, we start our study with the lin-
ear Hermitian case γC = γX = 0 and g = 0. When �2 = 0,
even exciton nodes ψX

2n are completely isolated from all
other nodes. The remaining photonic nodes and odd exci-
ton nodes form the so-called one-dimensional Lieb lattice
(also called the Stub lattice) model [24,53,54]. In this case
one can find the dispersion equation analytically, E (k) =
0,±h̄

√
�2

1 + 2J2[1 + cos(ka)]. The model exhibits a flat
band with E = 0 and infinite mass separated by gaps from two
dispersive bands, see Fig. 2(a). Flat bands possess a number of
intriguing physical phenomena, including compact localized
states, sensitivity to perturbations and disorder, strongly corre-
lated phases, and topological states [47]. Note that in addition
to the Lieb lattice flat band, the full model (1) has a trivial flat
band that corresponds to isolated exciton sites.

When the �2 parameter is nonzero, the two degenerate flat
bands at E = 0 split into two dispersive bands as shown in
Figs. 2(b) and 2(c). Hence, in the Hermitian case, flat bands
are present only in the limit of �2 = 0. On the other hand,
in the symmetric case, �1 = �2, the two bands with positive
energy and the two bands with negative energy coalesce with
each other, marking a transition to the uniform one-legged
ladder model. In the intermediate regime 0 < �2 < 1, the
two middle bands that emerged from the flat bands preserve
some properties of the flat-band eigenstates. In particular, the
structure of the eigenstates in the middle bands resembles
the CLS of the Lieb lattice as in Fig. 2(d). In contrast, the
eigenstates of the dispersive top and bottom bands resemble
standard bulk states, see Fig. 2(e).

IV. LINEAR NON-HERMITIAN CASE

We analyze the effect of nonzero decay γC, γX on the spec-
tra and eigenstates of the system, keeping the interactions g =
0. The results are presented in Fig. 3. It should be noted that
adding a uniform decay rate γC = γX > 0 would lead only to
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FIG. 2. Examples of spectra and eigenstates in the linear Her-
mitian case. (a) and (b) Energy spectra in momentum space for an
infinite system. In (a) we assume �2 = 0 (Stub lattice). In this case
there are two degenerate flat bands with E = 0, one corresponding
to the Lieb lattice flat band, and another corresponding to isolated
exciton sites ψX

2n. In (b) we have �2 = 0.4 ps−1, and the flat bands
split into two dispersive bands. Panel (c) shows an eigenenergy
spectrum in function of �2 in a finite system with N = 30. (d) and
(e) Examples of density distributions for eigenstates corresponding
to the flat band in (a) and dispersive band in (b), respectively. Corre-
sponding points are marked with a red star and a circle in (a) and (b).
Color scale is in arbitrary units. Other parameters are �1 = 1 ps−1,
J = 0.8 ps−1.

an addition of a constant imaginary part to the eigenvalues of
the system with no effect on the real part of the spectrum or
the eigenfunctions. However, in real systems the decay rate
of photons γC is typically much higher than the decay rate
for excitons γX . We find that this leads to a dramatic change
in the spectra. An example is shown in Figs. 3(a) and 3(b)
where real and imaginary parts of eigenenergies are shown
for the same parameters as in the Hermitian case of Fig. 2(b),
but with γC = 2.2 ps−1 and γX = 0.1 ps−1. In contrast to the
Hermitian case, we find that despite nonzero �2, the sys-
tem spectrum contains two flat bands in the entire Brillouin
zone, whereas the dispersive bands develop small regions of
flat dispersion at the two ends of the Brillouin zone. The
transition from dispersive dependence at low quasimomen-
tum to purely imaginary dependence at high quasimomenta
is marked by the occurrence of exceptional points. We note
that previously a purely imaginary dispersion was predicted
to occur in the Bogoliubov excitation spectrum of a polariton
condensate coupled to a reservoir [55]. However, it occurs
at low momenta whereas the miniflat bands that appear in
our model are present at high quasimomenta, and the model
does not assume condensation or include interactions with an
uncondensed reservoir.

The real part of energy eigenvalues is presented as a func-
tion of �2 in Figs. 3(c) and 3(d) for two values of the photon

FIG. 3. Linear non-Hermitian case. In (a) and (b) we show the
real and imaginary parts of eigenvalues in a function of quasimomen-
tum for the same parameters as in Fig. 2(b), but with nonzero decay
terms γC = 2.2 ps−1 and γX = 0.1 ps−1. In contrast to the Hermitian
case, flat bands are present in the system for a nonzero coupling
�2 = 0.4 ps−1. Exceptional points are marked with a black open
circle. In (c) and (d) we show real parts of eigenvalues in function
of �2 for the fixed �1 = 1 ps−1. Qualitatively different spectra are
shown in (d) for a smaller decay rate γC = 0.54 ps−1. The eigenstates
corresponding to the points marked in panels (a) and (b) are shown
in panels (e)–(g).

decay rate γC . Upon changing the decay rate, exceptional
points may emerge in the spectrum. Although in the case of
a high decay rate there are no energy gaps in the real part
of the energy, in the low decay rate case the gaps are open
at low values of �2 and the system spectrum is more similar
to the Hermitian case of Fig. 2(c). Nevertheless, even in this
case flat bands survive to a nonzero value of �2, in contrast to
the Hermitian limit. This shows that including dissipation to
the model, which occurs naturally in photonic systems, makes
flat bands much more robust. Moreover, increasing γC may
induce exceptional points. At low decay rates, we have three
distinct bands (including a flat band). This is shown in panel
(d) for low values of �2. But by increasing the decay rate,
the band gaps start decreasing, whereas exceptional points
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emerge at the gap closing. An example of a gapless spectrum
is shown in panel (c). In general, increasing decay rate leads
to coalescence of eigenvalues which gives rise to exceptional
points and the disappearance of the gap. At larger values of
the decay rate, exceptional points are present for any value of
�2, and so the real part has no gap in panel (c). However,
for a lower value of the decay rate the exceptional points
may appear only at certain range of �2. For this reason, the
spectrum in panel (d) displays band gaps.

Finally, in Figs. 3(e)–3(g) we show three examples of
density distributions of eigenstates corresponding to different
bands. The eigenstate of the flat band shown in Fig. 3(e) pre-
serves the characteristic structure of the CLS of the Hermitian
model, with all odd photonic sites being empty. In contrast,
the state from the flat miniband at high quasimomentum in
Fig. 3(f) is characterized by a complementary pattern with
all even photonic sites being empty. An eigenstate from the
dispersive band in the center of the Brillouin zone depicted
in Fig. 3(g) shows no particular structure of photonic states,
which are distributed more or less uniformly with only a small
admixture of excitonic states.

V. LASING

In the previous section we considered a lattice in the linear
non-Hermitian regime. A natural extension is a system in the
presence of nonlinearity g �= 0. Lasing corresponds to a steady
state in the case of positive gain. To achieve the steady-state
regime, we add a new feature to our dissipative model, that is,
we consider a balance between gain and nonlinear decay. In
this case particles escaping the lattice can be replenished by a
pumping term.

This can be analyzed simply by assuming γX < 0 (as the
pump source, e.g., a nonresonant optical pump creating ex-
citons) whereas γC > 0 (photon decay). In this regime, we
need to assume a nonzero-complex nonlinear term (g �= 0) in
Eqs. (1) to reach a stable steady state. We keep the associ-
ated parameters in the so-called weak nonlinear regime when
|g‖ψ1,n|2 and |g‖ψ2,n|2 are, at least, one order of magnitude
lower than h̄γC . As an aside, one possible source of disorder
that may become important in our modeling is due to ran-
domness in pumping, which is not considered here, but the
results remain unchanged with a minor percent of disorder
strength [56]. We provide examples of the dynamics in the
steady-state regime in Fig. 4.

Additionally, we calculate the spectrum of small Bogoli-
ubov excitations around the steady state. As we are dealing
with a homogeneous case, in the steady-state case we may
consider a stationary solution in the form ψSC,SX

j e−iEt/h̄. The
phase factor holds information about the eigenvalues of the
model in real space. Indeed, by substituting the above ansatz
in Eq. (1), one can find a set of time-independent equations,

0 = (−ih̄γC − E )ψSC
j + h̄J

(
ψSC

j−1 + ψSC
j+1

) + h̄� jψ
SX
j , (3a)

0 = (−ih̄γX − E )ψSX
j + h̄� jψ

SC
j + g

∣∣ψSX
j

∣∣2
ψSX

j , (3b)

which can be solved to find the eigenvalues E . To this end,
we solve model equations [Eq. (1)] numerically by employing
Runge-Kutta method, and use the corresponding excitonic

(a) (b)

(c)

(b)

(c)

(d)

FIG. 4. (a) Real part of energy of excitations in a nonlinear
steady state in a function of �2 for N = 30. The system is in the
weakly nonlinear regime. Parameters are γC = 2.2 ps−1 and γX =
−0.1 ps−1, other parameters as in Fig. 3. Red dots show the energy
of the linear excitation mode with the zero imaginary part. All other
excitations have energies with negative imaginary parts. In panels
(b)–(d) we show the evolution of densities in photonic sites. In panel
(b) we used �2 = 0.18 ps−1, which corresponds to a nonzero real
eigenenergy, see panel (a). In panel (c) we used �2 = 0.46 ps−1

for which the real part of the energy is very near the zero-energy
flat band. The resulting density shows signatures of random lo-
calization. Panel (d) shows an example of dynamics in a weakly
dissipative case where we used γC = 0.54 ps−1, γX = −0.12 ps−1,
and �2 = 0.85 ps−1. Here the system reaches the steady state after
initial Rabi oscillations. We assume the nonlinear parameter h̄g =
0.005–0.005i meV2 ps, which consists of both density-preserving
interactions and density-dependent decay.

occupations in the steady-state solution |ψSX |2 in the above
equations.

In the steady state, we are interested in excitations for
which the imaginary part of the energy eigenvalue Im[E ] is
zero since for Im[E ] > 0 the steady state is unstable, and for
Im[E ] < 0 the excitations decay in time. Excitation modes
with Im[E ] = 0 can be considered as discrete analogs of
Goldstone modes. We assume that the parameter that can be
manipulated externally is � j . As such, it would be useful to
consider the variations in energies with �2 in a steady state.

Real parts of excitation eigenvalues are shown in Fig. 4(a).
Here we assume that the interactions in a chain of micropil-
lars are effectively repulsive via the effect of exciton-exciton
interactions. Considering the case when particle-conserving
interactions and gain saturation are of the same order of
magnitude, we choose h̄g = 0.005–0.005i meV2 ps as our
effective nonlinear parameter taking into account both con-
servative and dissipative nonlinear processes. We note that
in comparison to the linear case in Fig. 3(c), at small �2 a
new split band is present in Fig. 4(a). This splitting from the
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zero-energy band is a nonlinear effect, that is, the nonlinear
term induces a positive on-site potential for the excitons, pro-
portional to Re[g]|ψX

j |2. We note that for small �2 exciton
sites which are indexed by j = 2n are almost isolated from
the rest of the lattice. Since excitons at these sites do not
experience photonic decay γC , their decay is controlled by
the imaginary part of the nonlinear term g|ψX

j |2. This term is
much smaller than the decay of photonic states γC in the case
of the weakly nonlinear regime that we consider here. Hence,
the j = 2n excitonic sites experience the highest gain, which
results in a steady state where density is mostly localized at
these sites at small �2. We show an example of steady-state
formation starting from a random initial condition in Fig. 4(b).

As �2 increases, these disconnected excitonic states (ψX
2n)

couple strongly with the other states. The populations in the
other sites in the steady state increase whereas the population
in ψX

2,n decreases. At some critical �2 the split band gap is
closed, and the real part of the energy eigenvalue becomes
zero as visible in Fig. 4(a). At this point, the eigenstate of the
system with the highest imaginary part of the energy belongs
to the E = 0 flat band. This has a profound effect on the
dynamics of the system. As shown in Fig. 4(c), states that
are spontaneously formed from a random initial condition
result in a different random density distribution after some
certain time. This random density distribution is long lived
and locally resembles the density of a flat-band state. This
can be seen as a reminiscence of flat-band CLS of the linear
Lieb model, see Fig. 2(d). Further increasing �2 with other
parameters fixed leads to a situation where no steady state ex-
ists since all the eigenstates have negative imaginary parts. In
this case any initial distribution decays to zero. A qualitatively
different situation occurs where the photon decay is decreased
as shown in Fig. 4(d). In this case the system converges to a
steady state with a periodic regular density distribution with
all sites occupied. The initial dynamics shows a clear signature
of collective Rabi oscillations in the lattice, which decays after
a sufficiently long time.

VI. CONCLUSION

To summarize, we propose that a lattice system with cou-
pled light, and matter modes can be used to realize a synthetic
comb lattice by employing the internal degree of freedom
due to light-matter coupling. This idea can be readily real-
ized in exciton-polariton systems where several methods of
tuning light-matter coupling strength have been shown. We

demonstrated that local engineering of light-matter coupling
provides a way to explore a dissipative phase transition be-
tween the regimes of dispersive and flat-band phases. The
transition is accompanied by the appearance of exceptional
points in the spectrum. Importantly, in the dissipative case
the flat-band regime is not restricted to a limiting case in the
parameter space but exists in a range of values of light-matter
coupling, which makes the phenomenon much more robust
than in the Hermitian case. We also showed that the existence
of a flat band has a profound effect on the states of the
system after long evolution in the regime of lasing, enabling
a straightforward experimental observation. The proposed
method can be generalized to higher-dimensional lattices, and
the number of sites in the synthetic lattice can be increased by
considering additional light and matter states. This opens the
way to explore non-Hermitian systems in higher dimensions.
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APPENDIX

The dynamics of exciton-polaritons are known to be de-
scribed by mean-field Gross-Pitaevskii equations,

ih̄ ∂tψ
C = −ih̄γCψC + h̄�ψX , (A1a)

ih̄ ∂tψ
X = (−δ − ih̄�X )ψX + h̄�ψC + α1|ψX |2ψX

+ gRnRψX + ih̄RnRψX , (A1b)

∂t nR = P − (γR + R|ψX |2)nR , (A1c)

where nR is the density of the exciton reservoir, P(γR) is the
rate of pumping to (decay from) a reservoir. There are three
parameters that take into account interactions: α1, gR, and
R. The energy detuning between the exciton and the photon
field is given by δ. By using the adiabatic approximation [57]
one can assume that nR ≈ P

γR
(1 − R|ψX |2

γR
), the effective equa-

tion for the exciton field becomes

ih̄ ∂tψ
X = − ih̄γX ψX + h̄�ψC + g|ψX |2ψX , (A2)

where we introduce −ih̄γX = −δ − ih̄�X + P/γR(gR + ih̄R),
g = α1 − gRPR

γ 2
R

− i h̄R2P
γ 2

R
. Equation (A2) has been used to simu-

late the exciton field in the main text.
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